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Abstract

Over the past 30 years, scientific software models have played an increasingly

prominent role in the conduct of science. Unfortunately, scientific models can be
difficult and time-consuming to implement, and there is little software engineering

support specifically available for constructing scientific models. Because these models

are not easily specified to scientifically-naive programmers, and because the scientist

requires intimate knowledge of the code to conduct experiments, many scientists

implement their own models. This coding activity takes valuable time away from

their primary scientific mission.

We have developed a knowledge-based software development tool that assists

scientists in prototyping scientific models. With a specialized graphical user
interface, the scientist constructs a high-level visual specification that captures the

essential computational dependencies in the desired model. The system uses its
scientific domain knowledge to ensure that the model being built is consistent and

coherent. The final product is an executable prototype of a scientific model. Our tool

accelerates the model-building process and eliminates the scientist's need to program in

a formal language. Furthermore, the models developed with this tool are easier to
understand and reuse than typical low-level scientific modeling code. At present,

models developed with our system are restricted to those involving non-coupled

algebraic and first order ordinary differential equations. Research is ongoing to lessen
this restriction and support models with simultaneous equations.

Keywords: scientific modeling, numerical computing,

domain-specific software tools
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1 Introduction

1.1 Motivation

The use of scientific software models is pervasive throughout science today. In fields ranging widely

from astrophysics to zoology, scientists construct models to analyze data, to _,alidate theories, and to

predict a whole variety of phenomena. Despite the critical importance of scientific modeling, there is

little software engineering support specifically available to facilitate the model-building process. We

believe that the development and introduction of intelligent tools to support scientific model-building

activities can have a significant impact on scientific productivity and on the quality of scientific

models produced.

Construction of scientific modeling software is similar to construction of conventional software in

many respects. However, there are several characteristics of the scientific model-building domain

that make it somewhat unique and worthy of special attention. First, in this domain, the software

actually represents a concrete manifestation of a new scientific theory - a genuine scientific artifact

that should be shared and validated within the scientific community. Although the new theory is

typically described in a scientific journal article, potentially important scientific details and modeling

assumptions may be skimmed over or omitted entirely in the written description. The complete details

of the theory can only be found in the code itself. Unfortunately, a thorough examination of the code is

often necessary to recover this information. Such an examination can require considerable time and

effort, as the scientific details are difficult to discern at the code level. This impenetrability of

modeling code prevents colleagues from attaining a thorough understanding of a new theory, and serves

as a barrier to reuse of scientific modeling code. Scientists are legitimately hesitant to reuse unfamiliar

code because they know that conflicting assumptions buried in a colleague's code could invalidate their

own scientific results. In sum, there is perhaps a greater than typical institutional burden on scientists

to produce code that is understandable and reusable.

Another unique characteristic of modeling software is that the scientific end-user is often directly

involved in the design and implementation of the code. This direct involvement is the result of several

factors. First, programming resources are typically scarce in scientific labs, and researchers may have

no choice but to do their own programming. Even when programmers are available, it may be difficult

and time-consuming for the scientist to convey the necessary scientific details unless the programmer is

well-versed in the scientific discipline. Finally, once the initial code is complete, the scientist must run

experiments to verify the model. This may involve considerable changes to the code and may be

awkward and inconvenient unless the scientist is intimately familiar with the implementation. A

combination of these factors may force a scientist unwillingly into the programmer's role. In all



A Prototyping Environment for Constructing Scientific Models Keller et al.

likelihood, the scientist's limited time would be better spent conducting scientific activities than

programming.

Finally, scientific coding presents an unusual combination of special technical challenges to a

programmer. Frequently, scientific computing is computationally intense, and the programmer may

need to design special algorithms, optimizations, and/or data structures to combat time or space

complexity. Often these scientific computations are numerically sensitive arid require application of

sophisticated numerical analysis techniques. In coding numerical applications, the programmer

typically must access large, complex numerical subroutine libraries and access large numerical datasets

to piece together a solution to a numerical computation. When solving differential equations, the

programmer must design and manage a computational grid structure that appropriately discretizes the

continuous parameters in a model. Furthermore, the programmer faces significant bookkeeping

overhead required to keep track of scientific units and to maintain the integrity of a numeric

computation throughout. Lastly, there is the pervasive problem of maintaining high-quality

documentation for the scientific modeling code. Individually, none of these requirements is unique, but

in combination, they characterize a suite of special skills required by programmers in scientific

software development environments.

1.2 The SIGMA System

We have developed the SIGMA system (Scientists" Intelligent Graphical Modeling Assistant) at

NASA Ames Research Center to begin addressing some of the scientific model-building community's

diverse software development needs. SIGMA is an interactive knowledge-based tool that helps

scientists prototype scientific models. Through an interactive dialog with the scientist, the system

develops a complete, coherent, and executable prototype of a scientific model. To facilitate this

process, SIGMA provides scientist-users with a high-level visual specification language in which to

express scientific models. Within this language, users can specify how scientific quantities of interest

can be computed by applying equations or subroutines to known input data. The terms in SIGMA's

language reference familiar domain-specific scientific constructs (e.g., specific physical quantities,

scientific equations, and datasets). The language is at a sufficiently high level that it omits most

implementation details involving data structures and fine-grain control. SIGMA's reasoning

components infer these details by referencing extensive domain knowledge and by carrying out

clarifying interactions with the user. Once the specification is complete, SIGMA can execute the

scientific model and provide visual feedback on the results by displaying data plots.

We chose to develop SIGMA as a specialized tool for the scientific modeling domain, rather than

provide users with a general-purpose, broad spectrum software engineering tool. We felt that a
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general-purpose tool would have been provided more power than required for the task, and would have

proved too open-ended and unfocused for scientists. Scientific models constitute a restricted class of

programs, and there is special expertise associated with developing these programs that can be

exploited to build a customized tool to suit the task. We found that there were significant benefits to

developing a specialized tool. By restricting the domain, we were able to employ extensive knowledge

about the modeling task and the user's design goals. As a result, SIGMA can accept less complete

software specifications than would be required by a general-purpose software design tool. Low-level

details omitted by the user can be supplied by the system based on its domain knowledge. Furthermore,

using this domain knowledge, the system can provide more intelligent assistance to users during the

software design process. Although the range of programs that can be specified using our system is

considerably more restrictive than with a general-purpose software design tool, SIGMA is also easier

and more intuitive for scientists to use. This kind of tradeoff between generality and ease of use is the

hallmark of domain-specific software design systems (Barstow, 1985; Keller, 1992).

SIGMA was designed as a rapid-prototyping tool for building scientific models. We believe that

model prototyping is an area where automated techniques can provide great leverage, and where

knowledge-based approaches can make a significant impact on the scientific community. We made a

strategic decision to focus on providing knowledge-based support for model construction, rather than to

expend our limited resources generating efficient code. In fact, SIGMA does not produce actual code.

Instead, a model is represented in SIGMA as a set of explicit data structures, and execution is handled

by a special-purpose interpreter. We find that this is adequate for exploratory prototyping activities

and simple modeling tasks, but ultimately a model must be compiled into efficient code if it is to be used

routinely and involves any significant amount of computation or data. Nevertheless, because scientific

model-building is an inherently exploratory activity, we believe users will find value in a flexible

prototyping tool, even if it does not produce optimized code. Much of the effort in model-building goes

into the initial conceptualization and design process, and SIGMA provides significant help with these

activities. After designing a prototype using SIGMA and running some test cases to validate the model,

users may find it less time-consuming to produce efficient code in a conventional high-level language of

their choice. The prototype model can be used as a basis for implementation of production-quality code.

Of course, the proper solution to the code-generation problem is to write a model compiler that produces

high-quality, optimized code from SIGMA's internal structures. We believe that model compilation is

relatively straightforward, and could be handled using conventional compiler and knowledge-based

synthesis techniques. This is an area for future work.

3
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1.3 A perspective on model-building

Before learning how SIGMA assists in developing prototypes of scientific models, it seems crucial to

have a firm understanding of exactly what constitutes a model. The conventional view is that a

scientific model can be expressed as a set of numeric equations, and that the modeling code implements

these equations. From our perspective as researchers interested in automaticgeneration of modeling

software, this view is too narrow. Although numeric equations may form the core of a model, these

equations must be annotated with a considerable amount of information before they can be turned into

executable modeling code. As syntactic entities, equations express abstract numeric relationships among

equation variables. However, in order to properly implement a set of equations in the context of a

specific modeling situation, it is critical to understand the correspondence between the equation

variables and the attributes of the physical situation being modeled. Scientists understand these

relationships and take them for granted. When a scientist implements a scientific model, he or she

implicitly uses this knowledge - plus a great deal of other background scientific knowledge -- to build

a semantically correct implementation of the equations. If we are attempting to build a software

assistant that can interact intelligently and synergistically with a scientist to create modeling

software, we must provide the system with the background knowledge that the scientific user takes for

granted.

Our approach is to acquire this background knowledge from scientists, encode it using a uniform object-

oriented representation, store it in a knowledge base, and make it available to our system. SIGMA uses

this knowledge to support its inferencing, retrieval, and user interface requirements. The knowledge

base provides a common language and vocabulary in which to express aspects of a scientist's theory that

must be referenced during the model construction process. We encode not only scientific facts and

equations, but also the details of the experimental situation posited by the investigator. This

contextual information is essential to our goal of providing the system with a basis for understanding

the semantics of numerical modeling equations. As we will see, although the end product of the

scientific modeling process is a piece of numerically-intensive software, the process of creating that

software involves considerable symbolic reasoning.

To summarize, our approach with SIGMA has been to extend the notion of a scientific model beyond a

set of equations so that it explicitly encompasses the user's internal model of the objects, attributes, and

relations that describe the experimental situation. By making the internal model explicit, we are able

to exploit this model in concert with other background knowledge to guide the model-building process.

In the balance of this paper, we describe how SIGMA uses domain knowledge to assist the scientist-

user in constructing an executable model prototype. In Section 2, we describe the design requirements for

4
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the SIGMA system. Section 3 follows with a guided tour of the SIGMA system. Section 4 describes

SIGMA's equation representation, which forms the foundation for SIGMA's intelligent assistance

capability. Section 5 describes SIGMA's knowledge base, which provides the essential background

information that is used in interpreting and applying equations. Section 6 revisits the guided tour once

again and elaborates on some of the mechanisms used to ensure the construction of scientifically

coherent models. Finally, Section 7 reviews related research and Section 8 discusses current status and

future directions.

2 Design for a scientific software assistant

In designing SIGMA, our goal was to provide a rapid-prototyping environment that would allow

scientists to formulate, implement, test, and modify models. Currently, the scientist accomplishes

these model-building steps with little or no automated assistance. When a scientist wishes to

formulate a model, he or she might begin by sketching out some of the relevant theory in terms of

equations, diagrams, and perhaps some narrative text. All of this information is accumulated in a

scientific notebook, which serves as a kind of informal medium for specifying the scientific model.

Next, the scientist turns the informal specification into code. Of course, this translation process is non-

trivial; Much of the information necessary to transform the notebook sketch into an executable

scientific model is implicit scientific background knowledge. The scientist takes this knowledge for

granted, and it never appears in the notebook. When the modeling code is complete, the scientist

executes the model, analyzes the results, and debugs the model as necessary. The entire model-building

process iterates until the scientist has a satisfactory answer to his or her original scientific inquiry.

The primary challenge we faced in designing SIGMA was to come up with a comfortable

specification medium for scientists designing models - a medium as simple, informal, and exploratory

as the scientists' notebook, yet one that enforced enough structure that it could be mechanically

augmented and transformed into a complete, executable model. We particularly wanted to avoid

requiring scientists to tediously recapitulate implicit common-sense background science knowledge that

would be required to translate the informal specification into code. This design goal was reinforced by

our collaborators' express desire to communicate modeling problems to SIGMA at a level of detail that

would be sufficient for graduate students to understand and code. If they were required to convey a lot of

basic scientific knowledge as part of building a model, our collaborators indicated they would rather

code the model themselves in Fortran.

Aside from minimizing the need to specify background knowledge, we wanted the specification to be

simple and intuitive so that scientists could quickly grasp the scientific essence of any specified model.

5
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In particular, we wanted the specification to use a vocabulary familiar to scientists - one based on

meaningful scientific constructs from the modeling domain. We felt this requirement would increase the

likelihood that the specifications produced would be understandable and reusable across different

groups of scientific users. We also wanted the specifications to be at a sufficiently high level so that

most low-level programming details (e.g., fine-grained control, data structure management, database

access) could be omitted. We felt this requirement would decrease the-level of programming

sophistication required to implement a useful scientific model.

These system design criteria - exploratory yet structured environment, minimal specification of

background science knowledge, scientific intuitiveness of specifications, and ease of use -- guided us in

the development of SIGMA. To satisfy the exploratory requirement, we implemented SIGMA as a

CAD-like environment featuring a direct manipulation graphical user interface. To satisfy the

minimal knowledge specification requirement, we shifted the knowledge burden from the user to the

system by developing an extensive scientific knowledge base containing general scientific computing

knowledge and domain specific knowledge. This knowledge is used to augment and formalize the user's

informal specifications. To satisfy the intuitiveness and ease of use criteria, we utilized data flow

diagrams as the basic structure for specifying scientific models. These diagrams specify the basic

scientific dependencies between quantities computed in a model.

At the onset of our work, we decided to restrict the class of scientific models we would support with

the first trial version of our system. This class includes only models describable as sets of non-coupled

algebraic equations and first order ordinary differential equations. Due to their lack of simultaneity,

models containing non-coupled equations are easy to visualize using data flow diagrams. Also, models

with non-coupled algebraic and first order ordinary differential equations require less sophisticated

solution procedures than models with simultaneous or higher-order differential equations. Although

these restrictions exclude important scientific modeling problems (notably, those involving partial

differential equations), SIGMA can still handle many problems of practical interest. The success of our

initial approach has led us to investigate methods of extending the scope of our system to incorporate

simultaneous and higher order differential equations in future versions of SIGMA.

3 A guided tour of SIGMA

In this section, we provide a brief guided tour of SIGMA and illustrate how models can be built using

the system. The purpose of this tour is to introduce SIGMA's capabilities, and to set the stage for a more

in-depth discussion of the representation and inferencing techniques that underlie these capabilities.

As background for this guided tour, we first describe a particular scientific experiment that will be used
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to illustrate SIGMA's model-building interaction. Next, we take the reader through a sequence of

model-building steps in SIGMA, accompanying each step with illustrative screen images produced by

the system's graphical user interface. Finally, we highlight the main technical challenge that we

faced in designing SIGMA to achieve the behavior illustrated in the guided tour.

3.1 Titan Atmospheric Modeling

To demonstrate how SIGMA works, we will illustrate with an example from our work with

planetary scientists at NASA's Ames Research Center. We will demonstrate the reconstruction within

SIGMA of a small fragment of a planetary atmospheric model that was originally developed (in

Fortran) to investigate the thermal properties of Saturn's moon Titan (Lindal, Wood, Hotz, Sweetman,

Eshelman, & Tyler, 1983; McKay, Pollack, & Courtin, 1989). The scientists' goal in building this model

fragment was to calculate a profile of Titan's atmosphere that describes the density, pressure, and

temperature at various altitudes above its surface (see Figure 1). The major source of experimental data

Refractivity
Experiment:

Voyager /0.%

11111111111

i
i

• .o .j_

Atmospheric Profile <p, P, T>
R: measured

refractivity

Figure 1: The Voyager refractivity experiment• Based on refractivity data
collected during the Voyager experiment, the scientist's modeling goal
Is to develop an atmospheric profile. The profile must specify density
(p), pressure (P), and temperature (T) as a function of altitude.
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relevant to Titan modeling was generated by the Voyager-I flyby of Titan in November 1980. As

Voyager-I reached the far side of Titan, it sent back radio signals that passed through Titan's

atmosphere and then on to receiving stations on Earth. Due to the density of gases in the atmosphere,

the radio waves were refracted slightly as they passed through the atmosphere, resulting in a

diminished signal picked up on Earth. The amount of refraction was measured at different altitudes

above the surface by panning the radio signal sent from Voyager and sampling at discrete points. This

refractivity data serves as a starting point for inducing the desired atmospheric profile.

Although we focus on Titan atmospheric modeling in this paper, we have also done extensive work in

another scientific domain to illustrate the generality of our approach (Dungan & Keller, 1991). In

particular, we have used SIGMA to develop large portions of a forest ecosystem model that tracks the

carbon, water, and nitrogen cycles in a forest ecosystem (Running & Coughlan, 1988).

3.2 Steps in Model-building

This section describes five general steps involved in implementing a model with SIGMA:

1. Establish the modeling scope;

2. Specify a goal quantity;

3. Construct the model;

4. Execute the model;

5. Revise the model.

We illustrate these general steps in terms of .the Titan atmospheric modeling problem. The specific

goal of the illustrated modeling activity is to specify the density portion of the Titan atmospheric

profile.

3.2.1 Step 1: Establish the modeling scope

As the first step in building a model with SIGMA, the user must make a number of choices to define

the scope of the modeling session and set the context for the modeling activity that will follow. In

particular, the user selects from a fixed set of parameterized, experiment scenarios. These experiment

scenarios are predefined by a knowledge engineer in collaboration with a domain scientist. Each

experiment scenario describes the experimental setup for a different modeling situation using an object-

oriented representation. This representation includes objects, attributes, and values that a scientific

expert feels are relevant to describing the particular experimental situation. Each object in the scenario

is defined in SIGMA's scientific knowledge base, and stores both a set of quantities associated with the

object and a set of links to related objects. After the user selects an experiment scenario, SIGMA

8
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instantiates the scenario's domain objects and links them together according to the scenario definition.

After setting up the domain object instances, the system checks the experiment scenario definition to

determine whether initial values for any quantities have been specified. If so, SIGMA loads these

initial values into the specified quantity attributes of the instantiated domain objects. An example

will clarify the role of the experiment scenario.

In our example, the user has selected the "Lindal I Scenario" from the TGM (Titan Greenhouse Model)

modeling domain (see Figure 2). This scenario is parameterized by two items: the set of atmospheric

constituents and the number of Voyager refractivity data points to be analyzed. In this case, the user

has chosen to include gaseous hydrogen and nitrogen as part of the Titan atmosphere, and wishes to

analyze a total of 106 data points. Figure 3 illustrates part of the structure of interrelated objects and

quantities that results from instantiating this parameterized scenario. The arrows in the figure

represent links between the objects. This scenario represents the Voyager-I flyby experiment described

in Section 3.1. In the scenario, the atmosphere of Titan is modeled by a sequence of spatially adjacent

atmospheric-parcel objects, which are stored as an array of links in the "parcels" slot of the Titan

object. Each atmospheric-parcel represents a mixture of gases at a specified altitude above Titan's

surface. Each of these gases is described by a constituent object. The atmospheric-parcel and both

constituents are being irradiated by a common radiation-source: the Voyager-signal object. The

radiation-interaction objects in the figure represent the actual collision of the radiation with the

irradiated material. (There are three separate radiation-interaction objects because the collision with

each constituent is modelled separately from the collision with the atmospheric-parcel.) Quantities

that are a function of both the radiation source and the irradiated material are stored in the radiation-

interaction objects. For example, the amount of refractivity caused when the Voyager radio signal

penetrates the atmospheric parcel is a function of both the wavelength of the Voyager signal and the

properties of the gaseous material in the parcel. Note that in this scenario, the refractivity value is

known a pr/or/ based on earthbound observations. Thus, the value of the refractivity attribute

associated with Radiation-Interaction-14 has been initialized. Other values are also known based on

background domain knowledge in SIGMA's knowledge base. For example, the molecular weights of

hydrogen and nitrogen are known. In essence, the structure in Figure 3 is a formal representation of the

experimental situation depicted in Figure 1.

1The "Lindal Scenario" is named after G. Lindal, who was the principal investigator in charge of the Titan-Voyager

experiment.
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=1 SIGMA Model BuildincjEnvironment

SIGMA
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Figure 2: Parameters for instantlation of "Lindal" experiment scenario
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Figure 3: Instantiated "Lindar" experiment scenario.
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The fully instantiated Lindal scenario actually contains an array of structures isomorphic to the one

depicted in Figure 3. There is one structure associated with each atmospheric-parcel link stored on the

parcels slot of the Titan object (i.e., one structure for each altitude level at which a refractivity data

point is to be analyzed). This array structure corresponds to what is referred to conventionally as a

discretized computational "grid". In our case, the grid is one-dimensional, but often, grids are higher-

dimensional.

A more complete description of the Lindal Scenario - including a full specification of the objects,

quantities, and interconnections - can be found in Appendix 2.

Having introduced the notion of an experiment scenario, we can now describe the aim of a SIGMA

modeling session more precisely in terms of the scenario. The aim of the modeling activity is to specify

a computational method for determining one or more of the unknown quantities in the experiment

scenario. We call these quantities "goal" quantities because they are in some sense goals of the

modeling activity.

3.2.2 Step 2: Specify a goal quantity

To specify a goal quantity, the user selects from a list containing all quantities associated with any of

the objects in the experiment scenario. Because a given quantity may be associated with several objects

in the scenario (e.g., the mass of Titan, the mass of an atmospheric parcel, the mass of hydrogen, etc.),

the user must also identify an object in order to uniquely specify the goal quantity (see Figure 4). In

addition, the user must specify the scope of the quantity in cases where it recurs within an array-

structured computational grid. For example, as discussed above, the Lindal Scenario (Figure 3) includes

a one-dimensional grid array of atmospheric parcel objects, representing the parcels at various

altitudes above Titan's surface. If the user selects the density of an atmospheric parcel as the goal

quantity, he or she must also specify whether their intention is to compute all of the density quantities

on the grid, a subset of these quantifies, or just a single quantity. Once all of the goal quantity selection

decisions have been made by the user, SIGMA displays a single node representing the entire scope of the

selected goal quantity as the starting point for subsequent model-construction activity (see Figure 5).

11
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;'='J Goal Qua.lily Selection

Qum,d/ty Categories: [ A_. r_[

D,_,ity_,,,, e= ,,,oh,,_) [I
Oe=sityOum',_m"e_ mcea) [ r"
'- '-'- "" I/
o_,ity I/
_"_ I/
_a,=N_= I/
L=_ H,= ofv,_o,i_,, I/
M. ]Iv

O_ects

H2 Comdlt_

Hy_h'og_ Molecule
N2 Cummlmmd

Nitrogm Molecuim

'l_tm

_11 IF>[

Sc_e _ Q_mntlly:

B

Figure 4: Selection of the goal quantity.

Model ConstrucUonWindow
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.titan Atmospheric Parcel (_

I<11 I Pi

Figure 5: Initial model construction window contains a single node
representing the goal quantity.
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32.3 Step 3: Construct the model

After the goal quantity has been established, the next step is to formulate a model capable of

computing the quantity. The construction of the model involves assembling a sequence of numerical

transforms (i.e., equations and/or subroutines) that can be applied to known quantities in the

experiment scenario in order to compute the desired goal quantity. Within SIGMA, a model is

represented using a data flow structure that describes how the goal quantity is computed from other

quantities via the application of transforms. Although the model execution process starts with known

quantities and calculates unknowns from them, the model construction process is conducted in the reverse

order, working backward from the unknown goal quantity toward the known quantities.

To begin the construction process, the user clicks on the right arrow button of the density quantity node

in Figure 5, indicating his or her desire to extend the initial model (which consists of just a single node)

to the right. By convention, quantities (i.e. data) flow from right to left in the data flow diagram.

Thus, extending the model to the right of a quantity Q involves finding a computation to compute Q,

whereas extending the model to the left involves using Q to derive some other quantity.

To identify possible extensions to the model, SIGMA searches through its knowledge base to find all

numerical transforms that can be applied to compute the density quantity from other quantities.

Numerical transforms consist of either explicit scientific equations, which are created within SIGMA

using an equation entry tool, or foreign "black box" subroutines, which are externally created and

imported into SIGMA. Once the system has identified an initial set of candidate transforms, the set is

filtered to remove any transform that is not semantically meaningful to apply in the current situation.

Specifically, SIGMA filters out any transform that is 1) invalid to apply in the context of the current

experiment scenario, or 2) inconsistent with the model fragment constructed thus far. In Figure 6, the

transforms that remain after this filtering process appear in the list entitled "Applicable Tranforms".

For informative purposes, transforms that were filtered out are displayed in the "Near Miss

Transforms" list. This knowledge-based transform-filtering process is a key feature of SIGMA's

functionality, and is more fully described in Section 6.

The user must now select one of the applicable transforms to include in the model. The user's selection

is based on his or her scientific expertise; SIGMA provides information about each transform (as shown

in the equation description and bibliographic citation windows displayed in Figures 7 and 8), but does

not make a choice for the user. In our example, the user chooses to apply the equation labeled "Density

Computation". SIGMA applies the equation and extends the data flow graph to the right as shown in

Figure 9. The node with the thicker border represents the selected transform, and the polarizability

and refractivity nodes to its right represent the input quantities required by the transform to compute

the density quantity. Although it is not visible in the black and white reproduction of SIGMA's color
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interface, each quantity node in Figure 9 is colored to indicate the value status of the node (see Figure

2.) Yellow (labeled "Y" in the figures) indicates that the value of the associated quantity is known;

White (labeled "W") indicates that the value of the quantity is computable from other quantities;

Red (labeled "R") indicates that the value of the quantity is unknown. In Figure 9, the refractivity

node is yellow because the value of the refractivity is known in the initial experiment scenario (Figure

3). The polarizability node is red because there is no value known for this quantity. The coloring of the

density node switches from its initial red color in Figure 5 to white in Figure 9 after the data flow

diagram is extended to the right using the density calculation equation; The density value is now

computable from the polarizability and refractivity values.

To proceed in developing the model further, the user has two options: manually input a value for

polarizability (via the "qnput" button on the node) or compute its value by extending the model further

using the right arrow button. In our case, the user extends the model by selecting the "Polarizability of

a Gaseous Mixture" equation (Figure 10) from the applicable transforms presented by the system.

SIGMA augments the data flow display to reflect this selection as indicated in Figure 11. Note that

there are two sets of quantity nodes required as inputs to this equation because the equation is a

summation over the two atmospheric constituents. Since the user selected nitrogen and hydrogen

constituents in the Lindal Scenario setup (see Figure 2), a mixing ratio and a polarizability is required

for each constituent.

=._JChoose Tran_lAl_j_l_ ¢rap.doms

la_,aG,.,_ N- Pt (k* T)

_e_ miss" 'l"_msf_as

[]

Figure 6: Transform selection options.
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=1 Transform: Density Computation

N=R/p
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_ts mm_er &msity (N) and polmc/zalglity (p).

p Pol_d_zabi_y of _ Intezacti_

N Dem_y (mmber per-mime) of Physical _y

R Refractivity of _ Inte_acticm

Figure 7: Description of equation labeled "Density Computation".

!=,[ Qtation for: Density Computation

"The Thermal S_ce of Titan's Atmosphere."

C.P.McKay, J.B.Pollack, and R.Com'_

Icm'us, Vol. 80

p. 44, 1959

AcmlemicPress

This equat/onls only idrded al inthe text: 'Usmgthe re_s Fmted
Table IV, the e_ess dem_y]prolRe of Lindal et al. (1983) is recmn]_ed

to coa'rect for the presslre of PJm-x_coge_ gases'. Therefme, the exact form
of rids equa/ion has bee_ rafimmlly recmu_macted form McKay's TGM FORTRAN
mode/.

Figure 8: Bibliographic citation for "Density Computation" equation.
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IQ _ _! Model ConstrucUon V/indow Io[E]
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: Voyager Signal thru _tan Atmospheric Pan;el

Figure 9: Model construction window after Density Computation has
been applied. A node label "Y" Indicates that the value of the
associated quantity Is known; a node label "W" Indicates that the value
of the quantity Is computable; a node label "R" indicates that the value
of the quantity is unknown.

16



A Prototyping Environment for Constructing Scientific Models Keller et al.

=1 Trmlsform: Polarizability of a Gaseous Mixture

pol = gi( fi * pi)

Equation desc_dng the polarizal._y (pol) of amix_e as a f_cfio_ of the
polar/z._On3ity(p_/) of its constituents, _ve/ghted by mixingrv_io (f_i).

pi Polm-izal_lityof _ Interaction

pol Polarizalnlity of Radiative Interactitm

fi MixingRatio(manber)of mm_re Cmmimera

Figure 10: Description of equation labeled "Polarizability of a Gaseous
Mixture".

Proceeding further, the user continues to augment the model by repeatedly expanding the

computation beneath unknown (i.e., red-colored) quantity nodes in the data flow diagram, using the

right arrow button to select a transform to apply. The user can also choose to input a value for an

unknown quantity at any time. For example, the user might enter the mixing ratios associated with the

nitrogen and hydrogen constituents in the "Polarizability of a Gaseous Mixture" equation. The model

construction process terminates when all unknown nodes are eliminated. In other words, the model is

complete when the value of all quantity nodes in the diagram are either known (as a result of being

initialized in the experiment scenario or input by the user) or computable from these known values. The

user can expand the model in any order, and can undo previous decisions by re-clicking on the right

arrow button of a an already-expanded quantity node. In this case, SIGMA will permit the user to

choose an alternative transform for computing the quantity, and will excise the data flow graph section

that relates to the old transform. The user can now continue model-building using the new transform.

Figure 12 illustrates the final completion of the partial model illustrated in Figure 11.
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ModelCansb'uctl_ Window

CmrsorMo4e:
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Figure 11: Model construction window after application of equation
labeled "Polarizability of a Gaseous Mixture".
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Figure 12: Completion of model to compute density goal quantity.
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3.2.4 Step 4: Execute the model

After the model is complete, the user can click the "Compute" button on any quantity node to compute

its value. SIGMA's graphical user interface will graphically simulate execution of the data flow

diagram to help the user visualize the computation.

Basic execution is relatively straightforward, and is typical of data flow execution schemes (Davis

& Keller, 1982). To compute a given quantity, the system executes each transform in the data flow

subgraph rooted at the quantity node. Execution proceeds in order from the fringe of the subgraph back

to the root. Before a transform can be executed, all its inputs must be computed. The execution sequencing

is handled by a queuing mechanism. Any transform with all of its input values known is placed on a

queue to be fired. SIGMA's model-interpreter selects and executes transforms one at a time from this

queue. When executing an equation, the interpreter converts all inputs to a common scientific unit

system, and then performs the mathematical operations specified in the equation formula. If the

equation is a differential equation, the interpreter calls a differential equation solver to solve for the

output quantity. For this purpose, SIGMA makes a foreign function call to the LSODA procedure in

ODEPACK (Hindmarsh, I983). ODEPACK is a public domain, Fortran-based package of numerical

routines available through the NETLIB server. LSODA will solve the differential equation and return

a solution to SIGMA. 2 When executing a subroutine, the interpreter converts all inputs to the scientific

units expected by the subroutine's arguments, and then executes the subroutine via a foreign function

call. Once a transform is executed and its output quantity is computed, additional transforms that

require the new quantity may queue themselves for firing. The interpreter continually selects and

executes transforms until the desired quantity has been computed. After the quantity has been

computed, the user can click on the node's "Info" button to inspect or plot the computed value (see Figure

13 and 14).

Aside from this simple forward-chaining execution scheme, SIGMA's interpreter supports basic

conditional and iterative control, as well. Data flow control nodes can be inserted into the data flow

diagram using the 'split' and 'join' buttons at the top left of the model-construction window. These

consffucts split and join data flow paths based on the result of some logical test during execution. These

constructs allow the user to build forks and loops in the data flow path.

2SIGMA mustprovidecertainauxiliaryinformationtoLSODA, such astheboundaryconditions,theinterpolationmethod,

and otheT solution method parameters. This information is provided by the user prior to execution, as a part of the interaction in
which the differential equation is selected.
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Figure 13: Display of computed values for density goal quantity.
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Figure 14: Plot of values for density goal quantity.
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3.2.5 Step 5: Revise the model

If the model results do not match the user's expectations, or if the user wants to perform sensitivity

analyses, he or she can modify the model in a variety of ways and re-execute. For instance, the user

could change the value of any input quantity (e.g., the mixing ratios of hydrogen and nitrogen in Titan's

atmosphere). Or the user might choose a different transform to compute a particular quantity in the

model (e.g., by selecting the "Ideal Gas Law" rather than the "Density Calculation" in Figure 6).

At any point in the model-building process, the user can save the current model in the user's personal

model library. At the beginning of a subsequent modeling session, the user can request that SIGMA

automatically restore the previously-saved model. The user can now continue with the model-building

process as before. This feature enables users to interrupt their work and resume at a later date without

requiring them to repeat previous model-building steps from scratch.

3.3 Technical challenge: scientific coherence

The primary technical challenge we faced in developing SIGMA was to design a set of representation

and inference mechanisms to ensure that models constructed with the system would be scientifically

coherent. The evaluation of a model's scientific coherence has both a local and a global aspect.

Locally, this evaluation involves determining that each transform within the model is appropriately

applied. In other words, the scientific preconditions for applying each transform must be satisfied.

Globally, the evaluation of scientific coherence involves ensuring that the model transforms are

consistent with each other and that they fit together properly to achieve the desired result. We

wanted to provide SIGMA with the ability to evaluate scientific coherence for a couple of reasons.

First, we wanted SIGMA to present a set of intelligent transform application choices to the user.

Otherwise, the user might mistakenly choose to apply an inappropriate transform, and this would

lead SIGMA to produce a model that was fundamentally ill-formed. 3 Second, we wanted SIGMA to

dynamically monitor the overall consistency of the model being constructed, and prevent inconsistencies

from being unintentionally introduced by the user. These two abilities greatly increase SIGMA's utility

as a scientist's assistant and are crucial to its success.

Although maintaining scientific coherency is second nature to a domain scientist, automating this

process requires access to a great deal of semantic knowledge about transforms, domain objects, and the

experiment scenario. In the following sections, we will discuss the representation and inference

3We make no attempt to ensure that the models produced with SIGMAare "correct"models of the phenomenon being studied --
only that they are well-formed.
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mechanisms that SIGMA employs to evaluate and enforce scientific coherency. Then we will revisit

the SIGMA guided tour to explain how these mechanisms work together to maintain scientific

coherency during model-building. We start with SIGMA's equation representation, which forms the

foundation for much of SIGMA's intelligent functionality.

4 Scientific equation representation

Although the mathematical relationship expressed by any given scientific equation is clear from its

syntax, the syntactic representation fails to convey a variety of semantic information that is essential

to a real understanding of the equation. Much of the meaning inherent in an equation is bound up in the

interpretation of its symbols. Scientists in the same field tend to understand the meaning of equations

due to their shared understanding of syntactic conventions and their common scientific background. But

scientists from a different domain have little hope of understanding a particular modeling equation

without further explanation and annotation.

Consider the following equation:

F = Grr_m2 (1)
i,2

Physicists will recognize this equation as the Gravitational Force Equation, which describes the

gravitational force, F, between two bodies with mass m i and m 2, respectively. A physicist knows that

r in this equation represents the separation distance between the centers of mass of the two bodies, and

G represents the value of the Universal Gravitational Constant. The force is directly proportional to

the product of the masses and inversely proportional to the square of the separation distance. The

diagram that forms the basis for a proper interpretation of Equation 1 is illustrated in Figure 15. This

diagram is a description of the generalized physical situation in which the equation applies. The

semantics of the symbols in Equation 1 are intimately related to this situation. The symbols do not

make sense in a vacuum - they only make sense with reference to objects and quantities in the diagram.

m rn
1 2

Figure 15: Interpreting the Gravitational Force Equation.
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Evidently, a physicist brings a great deal of information to bear in understanding an equation based

on his or her training and background knowledge. This information goes far beyond the syntactic

symbols in the equation. Although non-physicists may understand the mathematics behind the

Gravitational Force Equation, they will be at a loss to explain the real meaning of the equation in terms

of the physics of interacting bodies. To understand further, they must be given access to semantic

information of the form described above.

Just as a non-physicist requires additional information to understand the meaning behind a physics

equation, a computer-based modeling assistant requires such information. In particular, SIGMA requires

a semantic interpretation for each equation in order to decide which equations can be applied

legitimately at any given point in the model construction process, and to ensure that the equations in a

model fit together in a consistent, coherent fashion.

To capture the type of semantic information outlined above, we designed an equation representation

similar to those developed for reasoning about lumped-parameter models of physical systems (Nayak,

1992). Each equation consists of a syntactic formula annotated with additional information that

constrains the symbols within the formula, and associates the symbols with quantity attributes of

objects in the scientific domain. To illustrate, Figure 16 graphically depicts our representation for the

Gravitational Force Equation. Each box in the figure represents a generalized class of scientific domain

objects, each of which has a defined set of slots (i.e., attributes). These slots store either quantities or

links to other objects. (The object links are displayed as thick arrows in the Figure 16.) Each symbol in

the formula is connected to a quantity slot associated with one of these objects. (This connection

between formula symbols and quantity slots is represented by a thin arrow in Figure 16.) For example,

the symbol m, refers to the mass of one of the bodies, which is a type of physical-entity object.

Similarly, the symbol m2 is the mass of another physical-entity, which is distinct from the first.

These two physical entities are related to one another through a force-field object using the first-

body/second-body links. The symbols r and F are the length and force associated with this force-field

object 4. Finally, the symbol G is linked to a constant that stores the value of the Universal

Gravitational Constant.

4If two different force-field objects were necessary to describe the equation, they would be depicted separately. Otherwise,

symbols depicted as pointing to slots in the same object are oonstrained to refer to the same object.
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Figure 16: Representation for Gravitational Force Equation

This graphical representation specifies a general applicability pattern for the equation. The

pattern is general because it specifies the object classes involved, rather than any specific instances.

The objects and constraints in the pattern must be matched against actual instances to determine if the

applicability conditions are met in a specific domain situation. The applicability conditions can be

expressed formally using predicate calculus notation. Given a set of three instantiated objects, pel, pe2,

and if, the applicability conditions for the Gravitational Force Equation are as follows:
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physical-entity(pel )

^ physical-entity(pe2)

a force-field(if)

^ first-body(if, pel)

a second-body(ff, pe2)

^ not-equal(pel,pe2).

A further constraint (not illustrated by the graphical representation) must be stated to ensure that the

length of the force field is the same as the separation distance between the physical entities:

^ equal(length(if), center-distance(pel, pe2)),

where the function length retrieves the length attribute of the force-field, and the

function center-distance computes the distance between the coordinates of the centers of

mass of the two physical entities.

Further details on the representation for the Gravitational Force Equation are given in Appendix

Section A1.2.

SIGMA's representation for subroutines is almost identical to its representation for equations, with

the following exceptions. First, the syntactic "formula" associated with a subroutine is a subroutine

call of the following form:

subr(argl, arg2, arg3, ...),

where subr is the subroutine name and argi is a symbol for the ith argument to the function. Arguments

are specified as either subroutine inputs or outputs. All subroutine symbols are linked to quantity

attributes of domain objects, exactly as is done with equation symbols. However, as described in Section

3.2.4, the execution of a subroutine is handled by a foreign function call, rather than by SIGMA's model-

interpreter. Some additional information is needed to interface SIGMA properly with external

subroutines. In particular, it is necessary to specify the dimensionality of any array structures expected

by the subroutine as input or produced as output. This is not necessary for equations, because the model-

interpreter can handle scalar or vector structures as required. With subroutines, it is also necessary to

specify the scientific units expected by the input and output arguments. When executing equations,

SIGMA handles scientific unit conversion transparently by converting all inputs to a common scientific

unit scheme before calculating the result. This is not possible with externally-written code that rigidly

expects input values to be in terms of specific scientific units and produces output values that carry no

scientific units. A detailed example of SIGMA's subroutine representation can be found in Appendix

Section AI.5.

SIGMA's representation for equations and subroutines can be viewed as defining a small constraint

network that provides the semantics for the symbols in the transform. To determine whether a
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transform applies in a given situation, the network must be matched to the situation and the constraints

must be checked. We will describe this matching process in greater detail when we revisit the SIGMA

guided tour in Section 6. This matching process depends heavily on the subsumption relationships

encoded in SIGMA's scientific knowledge base, which is the topic of the next section.

5 SIGMA's domain knowledge

SIGMA's knowledge base provides the necessary background knowledge to support the system's

model construction activities. This background knowledge is represented and stored in a hierarchically

organized, frame-structured knowledge base. The objects in this knowledge base encode a variety of

different types of knowledge, including information about scientific equations, physical quantities,

physical constants, scientific units, scientific domain concepts, and bibliographic citations. The

knowledge base contains information pertinent to scientific computing in general, as well as information

specific to our two main application areas: planetary atmospheric modeling and forest ecosystem

modeling. At present, the knowledge base contains over 2000 objects. These objects contain definitions

for approximately 600 classes which are described in terms of over 400 attributes. There are more than

1000 instances 5 of these 600 classes in the initial background knowledge base. Additional problem-

specific instances are added to the background knowledge when an experiment scenario is instantiated.

Overall, SIGMA's knowledge can be partitioned into four categories:

1. Cross-disciplinary scientific knowledge: Knowledge available to persons with a general

scientific background, including knowledge about various physical quantities, scientific domain

objects, scientific measure units, fundamental equations, and scientific handbook data.

2. Discipline-specific scientific knowledge: Quantities, domain objects, equations, and data

pertaining to a specific scientific discipline (e.g., biology, ecology, physics).

3. Problem-specific knowledge: Domain objects and relations pertaining to the specific physical

system being modeled by the scientist.

4. Programming knowledge: Knowledge about numerical programming methods, data structures,

control, etc. (In the current version of SIGMA, much of this knowledge is implicit in the model-

interpreter.)

A partial overview of the knowledge base is depicted in Figure 17. Although this overview is

incomplete, it gives a feeling for the structure of SIGMA's knowledge base. The construction of this

knowledge base represents a considerable expenditure of resources on our part. Our attention to

5The large majority of these instances represent physical constants associated with chemical molecules and solar system
objects de£mecl in the knowledge base.
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Figure 17: Overview of SIGMA's knowledge base

construction of the knowledge base and the associated ontology is motivated by the goal of reuse; We

want to make the knowledge reusable across a variety of scientific modeling domains. For example, the

concept of a physical-entity is general enough that it can be used in almost any modeling domain.

Physical-entity provides the basic types of quantities you would associate with any physical thing:

mass, density, temperature, etc. Domain objects such as 'atmospheric-parcel' in the atmospheric

sciences domain and 'plant-tissue' in the ecosystem sciences domain inherit from this general concept.

The hierarchy depicted in Figure 17 illustrates the subsumption relationships in SIGMA's knowledge

base, but does not give a feeling for the highly interconnected nature of the objects in the knowledge

base. As mentioned before, each scientific domain object in the knowledge base has two types of slots:

quantity slots and link slots. The quantity slots store physical quantity instances associated with the

object; the link slots point to other related domain objects. Each physical quantity instance in turn

contains two basic slots: a value slot and a units slot. The value slot stores the quantity's magnitude;

the units slot stores a unit expression associated with the value. The unit expression must be consistent

with the defined unit type associated with the definition of the quantity. For example, instances of

the quantity 'pressure-quantity" must have an associated instance of type "pressure-unit'. Instances of

pressure-unit can be either compound units of the form force-unit/area-unit (e.g., dyne/square-meter) or
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primitive pressure units (e.g., bar). SIGMA's knowledge base contains information that permits it to

convert units as necessary for consistent calculation. For example, the object representing the primitive

pressure unit 'bar', contains conversion factors necessary to convert bar to pascal, atmosphere, or to any

other known primitive pressure-unit.

Appendix Section A1.1 provides sample object definitions intended to give the reader more insight

into the structure of the objects in SIGMA's knowledge base. Due to its size and complexity, a complete

description of the knowledge base structure is beyond the scope of this paper.

SIGMA's representation language, called RML (Nayak, 1992), is built on top of CommonLisp and

CLOS, the CommonLisp object system. RML includes various inference features, including inheritance

and a forward-chaining rule system. RML also contains an integrated constraint language that enables

specification and efficient checking of arbitrary first order constraints involving slot values and

instances in the knowledge base. The RML representation language is based on CYCL, the language used

in the CYC project (Guha & Lenat, 1990).

6 The guided tour revisited

Having described SIGMA's equation representation language and the structure and contents of

SIGMA's knowledge base, we are now in a position to revisit the SIGMA guided tour presented in

Section 3. Our focus this time will be on understanding how SIGMA's underlying representation and

inference mechanisms work to ensure scientific coherence during model-building. Recall from Section 3.3

that a model is considered scientifically coherent if all transforms in the model are appropriately

applied and if the transforms interconnect to form a globally consistent computation.

Operationally, SIGMA enforces scientific coherence by limiting the set of transforms that can be

applied at any point to extend a model. Recall that model-building is accomplished by iteratively

expanding a data flow diagram to connect unknown quantities with known quantities via a sequence of

equations or subroutines. The user dicks the right arrow button to choose the transform that should be

applied to compute a desired unknown quantity. The set of candidate transforms presented to the user is

determined by starting with all of the transforms defined in SIGMA's knowledge base, and then

filtering out those that are inappropriate to apply in the current modeling situation. This transform-

filtering procedure is at the heart of SIGMA's intelligent functionality.
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6.1 Transform-filtering procedure

SIGMA's transform-filtering procedure ensures that the user will only be permitted to augment the

current model by applying an equation or subroutine that preserves scientific coherence. The set of

eligible transforms is computed as follows. Starting with the set of all transforms T in the knowledge

base, SIGMA first computes the subset of syntactically applicable transforms (Tsyntax). To determine

this set, each transform is accessed to determine whether any symbol in the transform has the same

quantity type as the desired unknown quantity, and if so, whether that symbol can be calculated as the

output of the transform. Transforms that pass this test are included in the subset Tsyntax. From this

restricted subset, SIGMA next determines the subset of semantically applicable transforms (Tsemantic).

These include only transforms from Tsyntax that also match the semantic constraints imposed by the

transform representation. Finally, Tsemantic is reduced further to create Tconsistent. This set

eliminates transforms from Tsemantic that are inconsistent with choices made in the model fragment

constructed by the user thus far. To summarize, T _ Tsyntax _ Tsemantic _D Tconsistent. The user's

choices are restricted to Tconsistent .6 Each phase of the transform-filtering process is covered in more

detail in the next section.

6.2 Transform-filtering in practice: the SIGMA guided tour

Consider an illustration of how the transform-filtering procedure works in practice. This example is

based on the interaction described in Section 3.2.3 of the SIGMA guided tour. In this interaction, the

user wishes to compute the density of the set of Titan atmospheric parcels.

To compute Tsyntax, the system searches to find all transforms containing a symbol with the same

quantity type as the density goal quantity. Because each symbol in a transform is linked to a quantity

slot of some object, and because these quantity slots are typed according to physical quantity, this

search process is simple. Consider the Gravitational Force Equation in Figure 16. This equation is not

included in Tsyntax because none of its symbols is linked to an attribute with the same type as the

density quantity. But even if a correctly-typed symbol is found within a given transform, this does not

guarantee that the transform will be included in Tsyntax. The symbol must also be computable as an

output of the transform. This condition may not be satisfied in one of two cases. First, the equation may

not be mathematically solvable for the symbol. SIGMA uses the REDUCE (Hearn, 1991) computer

algebra system to symbolically manipulate each equation formula to isolate the target symbol on one

6With respect to SIGMA's user interface, note that the us_ sees only two sets of tTansforms in the transform selection window

(Figure 6): "Applicable Transforms" and "Near Miss Transforms". The applicable transforms correspond to those in Tconsistent.
Thus, the user is restricted to choices that are guaranteed to yield a scien_fically coherent model fragment. The "near miss"
transforms correspond to inconsistent equations, Le. those in ('Tsyntactic - Tconsistent).
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side. If the symbol cannot be isolated, the equation is rejected from Tsyntax. Second, it is possible that

the matching symbol in the transform is not designated as a "possible-output" symbol. Typically, all

symbols in an equation are designated as possible outputs unless explicitly excluded by the domain

scientist who entered the equation. 7 For subroutines, only certain arguments are designated as outputs.

One example of a transform that is included in Tsyntax is the equation entitled "Refractivity of a

Gaseous Mixture":

R = _i(Ni*Pi). (2)

The graphic representation for this equation is shown in Figure 18, and the internal representation is

given in Appendix Section A1.3. This equation is included in Tsyntax because it can be expanded and

algebraically manipulated to compute a density quantity (Ni for some i).

After Tsyntax is computed, the next step in the transform-filtering procedure is to check whether

each transform in this set satisfies its defined semantic constraints in the context of the current

experiment scenario. For example, it turns out that applying Equation 2 in the context of the Lindal

experiment scenario is semantically justifiable. To see why, it is first necessary to understand the

scientific meaning of the equation, as depicted in Figure 18. This equation computes the amount of

refractivity induced when a mixture and its constituents are irradiated by an electromagnetic radiation

source. In Figure 18, there is a separate radiation-interaction object to represent the collision of the

source with the constituents and with the entire mixture. The refractivity (R) is computed by taking a

sum over each constituent (i) in the mixture, and calculating the product of the constituent's density

(Ni) and its induced polarizability (Pi).

To determine whether the semantic constraints associated with Equation 2 are satisfied, SIGMA

matches the general constraint network in Figure 18 to the instantiated objects in the Lindal experiment

scenario (Figure 3). This matching process utilizes the class-subclass subsumption relationships

specified in SIGMA's knowledge base (Figure 17). In the case of Equation 2, the matching process finds

the following legitimate bindings between objects in the equation's constraint network and instances in

the experiment scenario: 8

7Suppose an equation represents a new term definition in which a second-order quantity is defined in terms of more
fundamental quantities. The fundamental quantities are measurable, but the second-order quantity is only calculable in terms of
the fundamentals. Such equations are often written for notational convenience. Although solving the equation for one of the
fundamental quantities may be mathematically possible, it is of questionable operational value to calculate a fundamental
quantity from a non-measurable second-order quantity.

8Because the user specified that the scope of the computation covers the entire grid array of atmospheric parcel objects (see
Section 3.2.2), SIGMA actually binds the objects in Equation 2 to arrays of instances, rather than to the single instances identified
from Figure 3. For ease of understanding, we describe the matching process only in terms of the representative subset of instances
displayed in Figure3.
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Figure 18: Representation for equation entitled "Refractivity of a
Gaseous Mixture"

Mixture = Atmospheric-Parcel-32;

Mixture-Constituent = H2-Constituent-32 and N2-Constituent-329;

Radiation-Source=Voyager-Signal;

Radiation-Interaction(w/Mixture) -- Radiation-Interaction-14;

Radiation-Interaction(w/Constituent) = Radiation-Interaction-15 and Radiation-Interaction16.

Because there is a valid match, the semantic constraints are satisfied and Equation 2 is included in

Tsemantic.

The final test for equation applicability is to check that equation application would be consistent

with the choices made in the model fragment constructed thus far. This is where Equation 2 runs into

trouble. The user has selected the density of the set of atmospheric parcels as the goal quantity to be

computed. According to the subsumption hierarchy in Figure 17, an atmospheric-parcel is a type of

9N0te that there are two matching instances for both Mixture-Constituent and Radiation-Interaction (w/Constituent). This is
clue to the summation construct in Equation 2, which sums over each of the constituents. At the implementation level, SIGMA
explicitly expands the summation construct and creates distinct object bindings for each constituent.
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mixture. However, based on the semantic constraints expressed in Figure 18, the symbol Ni in Equation 2

corresponds to the density of a mixture-constituent, not to the density of a mixture. In fact, no symbol in

the equation corresponds to the density of a mixture. So although Equation 2 is appropriate for

computing the density of a constituent within some mixture (e.g., the density of the hydrogen gas

within the atmospheric parcel), it is inappropriate for computing the density of the mixture itself

(e.g., the density of the entire atmospheric parcel). Thus, Equation 2 must be omitted from Tconsistent.

Now consider the "Density Computation" transform which was actually selected by the user to

compute the density of the atmospheric parcel in the guided tour:

N=R/p. (3)

This equation describes the density of a physical entity as the quotient of the refractivity and the

polarizability induced when the entity is irradiated by an electromagnetic radiation source (see Figure

19 and Appendix Section A1.4 for the corresponding representation). In defining this equation, the

distinction between a mixture and a constituent is irrelevant. Equation 3 applies to any physical entity,

regardless of whether the entity is a mixture or part of a mixture. In particular, Equation 3 applies to

computing the density of atmospheric parcels. The matching process yields the following sets of

bindings between the objects in Equation 3 and the experiment scenario instances:

Set #1:

Physical-Entity = Atmospheric-Parcel-32;

Radiation-Source=Voyager-Signal;

Radiation-Interaction = Radiation-Interaction-14;

Set #2:

Physical-Entity -- H2-Constituent-32;

Radiation-Source=Voyager-Signal;

Radiation-Interaction = Radiation-Interaction-15;

Set #3:

Physical-Entity = N2-Constituent-32;

Radiation-Source=Voyager-Signal;

Radiation-Interaction = Radiation-Interaction-16;

Sets 2 and 3 are rejected for the same reason that Equation 2 was eliminated above: in these cases, the

symbol N in Equation 3 references the density of the wrong object in the experiment scenario. But in Set

1, N does match the desired goal quantity - the density of the atmospheric parcel. Thus Equation 3 is

included in Tconsistent.
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Figure 19: Equation representation for Density Computation

6.3 Maintaining global consistency

Having gained some insight into how individual equations are matched to ensure scientific

coherence, we continue with our reexamination of the SIGMA guided tour. At this point, our aim is to

understand more about how the transform-filtering procedure enforces scientific coherence globally over

the entire model. Essentially, this is done by propagating constraints throughout the model to ensure

consistency across all transforms. Because the output from one transform in a model is the input to

another, the semantic constraint networks for the individual transforms in the model can be logically

unified through their inputs and outputs. When taken as a whole, these individual transform-level

constraint nets can be composed to form one large constraint network underlying the entire model. We

illustrate with the next step in the guided tour.

The second equation selected by the user in the guided tour is the equation entitled "Polarizability of

a Gaseous Mixture" (see Figure 20):

pol= _i(fi*Pi). (4)

This equation computes the polarizability induced when electromagnetic radiation intercepts a

mixture. ' The polarizability (pol) associated with the entire mixture is computed from the
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Figure 20: Representation for equation entitled "Polarizability of a
Gaseous Mixture"

polarizability associated with each constituent (Pi), weighted by its fraction (fi) within the mixture.

Equation 4 is selected by the user to compute the polarizability of the atmospheric parcel. This output

of Equation 4 is required as an input to Equation 3. The input/output correspondence provides the conduit

through which constraints from Equation 3 flow to Equation 4.

In matching Equation 4 to the experiment scenario, there is initially some ambiguity concerning

which equation symbol should be treated as the output. Even though there are two symbols

representing polarizability quantities in Equation 4 (pol and pi), only one of these symbols makes

semantic sense as the output in this situation. In particular, pol is the correct output because it

references the polarizability of a mixture, and an atmospheric parcel is a kind of mixture. On the other

hand, Pi is an inappropriate output candidate because Pi references the polarizability of a mixture-

constituent, and the atmospheric parcel is not a kind of constituent.

Once the correct output symbol is determined by the system, the matching procedure logically unifies

the (input) symbol p in Equation 3 with the (output) symbol pol in Equation 4 to ensure that they both

reference the same quantity. In particular, the mixture referenced by Equation 4 must be the same as the

physical entity referenced by Equation 3. This is enforced by propagating the binding established for

the physical-entity to the mixture. In binding set #1 for Equation 3, the binding for physical-entity was
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established as atmospheric-parcel-32. This binding is propagated to the mixture. Once the mixture

binding is established, this constrains the other objects in Equation 4 so they are consistent with the

choice propagated from Equation 3. SIGMA maintains this type of global consistency in interpretation

throughout the entire model.

In some cases, there may be more than one way in which a single transform might be consistently

applied to the experiment scenario. This happens when the matching process-produces more than one

binding set (as with Equation 3 above). If there are an insufficient number of constraints propagated to

narrow the selection to a single consistent binding choice, SIGMA queries the user to select the

appropriate interpretation. For example, suppose the user wishes to compute the density of some

constituent within an atmospheric parcel using Equation 3. Because there are multiple constituents, the

system may not be able to determine which constituent the user intends to reference without further

guidance.

6.4 Discussion

Although the representation and inference mechanisms for maintaining scientific coherence are

somewhat complex, most of this complexity is transparent to the user. From the user's point of view,

the process of model-building is accomplished by graphically constructing a simple data flow diagram.

The user is unaware that the system simultaneously constructs a complex underlying constraint network

to assist in maintaining scientific coherence. The constraint propagation and maintenance mechanisms

that are employed by the system have a significant beneficial side-effect: they reduce the number of

choices that the user needs to make. For example, without the availability of constraints, the system

would propose applying transforms in situations where they are semantically meaningless to apply,

and the user would be left to sift through a set of unrealistic choices when only one choice is actually

feasible. This would increase user frustration and decrease the overall utility of the tool.

In addition to the constraint mechanisms, SIGMA's transform representation decreases the amount of

user interaction necessary with the system, as well. Aside from defining when transforms apply,

SIGMA's transform representation also provides the information necessary to properly apply the

transforms and bind the symbols in the formula. With the availability of this information, SIGMA

relieves the user from the burden of exhaustively specifying how each symbol in a modeling transform

binds to a quantity in the experiment scenario. In effect, the transform constraints enable the system to

infer part of the model specification automatically. Consider the application of the Density

Computation equation, as discussed in Section 6.2. To unambiguously specify how to apply the equation,

the user must only identify the atmospheric-parcel instance to which the equation should be applied.

The system uses its representation of the generic equation (Figure 19) to determine which subsidiary
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instances are involved in equation application. Subsidiary instances are identified by following links

from atmospheric parcel instance to all other instances referenced by the generic equation. Note that a

SIGMA user never explicitly needs to specify bindings for any of the symbols in the equation; based on

the semantic annotations, the system can automatically infer which quantity in the experiment

scenario the user intends to bind to a given symbol. And once initial bindings are established, they are

automatically propagated through the data flow diagram, thus relieving the user of the tedium of

repeatedly specifying bindings when they can be easily inferred based on the structure of the diagram

and the semantic annotations.

In summary, SIGMA's transform representation and constraint propagation mechanisms are the keys

to the system's ability to provide intelligent support in model-building. They work to increase the

system's autonomy and reduce the user's need to unnecessarily interact with the system.

7 Related work

On the surface, SIGMA appears similar to a large class of data flow based visual programming

environments that have been developed recently. There is a significant body of research on visual

programming environments and methods of representing program structure and content graphically

(Glinert, 1990). The recently-developed tools help users graphically construct software in a variety of

application areas, including image processing and scientific visualization (apE, 1992; Atwood,

Blankenbecler, Kunz, Mours, & Weir, 1990; AVS, 1992; Iconicode/IDF, 1992; Khoros, 1992), scientific

instrument design (LabVIEW, 1992), and simulation (Extend, 1992; STELLA/IThink, 1992). In all of

these cases, however, the software tool has fairly limited knowledge of the application domain.

Although the tools enforce simple syntactic checks on the data flow graphs and perform some type-

checking, none of these tools has a deep semantic understanding of what the data flow program is doing

and whether the operations on the data make sense. As a result, it is possible with these tools to create

a syntactically valid flow graph that is semantically meaningless to a domain specialist. Other

scientific computing tools, including symbolic algebra systems (e.g., Mathematica (Wolfram, 1988) and

Maple (Char, 1988)) and data analysis tools (e.g., MATLAB (MATLAB, 1989), IDL (IDL, 1992)), suffer

from similar problems related to their lack of knowledge about the scientific problem to which they

are being applied. In contrast, SIGMA uses domain knowledge during the model-building process to

check the model for scientific coherence as it is being constructed. In this way, SIGMA ensures that the

user constructs a semantically meaningful program.

For purposes of comparison with SIGMA, ThingLab (Borning, 1981) is perhaps a more relevant visual

programming environment to consider because it employs a knowledge-based approach. ThingLab is a

"simulation laboratory" that shares with SIGMA the idea of representing and visualizing constraints
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on domain objects in a simulation model. ThingLab operates on a variety of different types of

constraints, including symbolic as well as numeric constraints, and uses general constraint satisfaction

methods to calculate unknown quantities from known quantities in its constraint networks. Many of

SIGMA's constraint mechanisms have a precursor in the ThingLab system.

Aside from work on visualization, our work on SIGMA bears a close relationship to the growing body

of work on applying knowledge-based techniques to various aspects of scientific and engineering

computation (Abelson, Eisenberg, Halfant, Katzenelson, Sacks, Sussman, et al., 1989; Barstow, 1985;

Cook, 1990; Ford & Chatelin, 1987; Kook & Novak, 1991; Palmer & Cremer, 1991; Robertson, Bundy,

Uschold, & Muetzelfeldt, 1989; Weld & deKleer, 1990). We review some of the particularly relevant

systems for comparison below.

The ECO project (Robertson, Bundy, Muetzelfeldt, Haggith, & Uschold, 1991; Robertson, et al., 1989)

shares many goals with SIGMA. The ECO program was designed to enable ecologists to build

simulation models using a special-purpose sorted logic designed to express ecosystem concepts. The

models are conveyed in terms of the Systems Dynamics formalism (Forrester, 1961), which uses

"reservoirs" and "flows" to express differential equations. SIGMA and ECO differ primarily in terms of

their representational power and their scope. SIGMA uses a general-purpose frame-based

representation to express domain concepts, whereas ECO uses a more expressive, specialized logic

formalism that we believe would be more difficult for scientists to use. SIGMA has been designed as a

general model-building assistant, intended to assist scientist in a number of domains, whereas ECO is

more narrowly scopecl to ecological rnodels and the Systems Dynamics formalism.

Another system that is very close to SIGMA in both its goals and approach is SIMLAB (Palmer &

Cremer, 1991). Like SIGMA, SIMLAB provides users with a high-level language for specifying

physical system models. This language allows users to specify objects, quantities, and constraints in the

modeling scenario, just as in SIGMA. SIMLAB can represent more numerically sophisticated models

than SIGMA, however. SIMLAB can handle simultaneous sets of arbitrary ordinary differential

equations, whereas SIGMA only handles a non-coupled first-order ODEs. SIMLAB's model

specifications are translated into Fortran code that invokes differential equation solver packages

necessary to solve the set of equations. In contrast, SIGMA's model structures are interpreted directly

within LISP. The two systems also differ in how equations are applied to objects in the experiment

scenario. SIGMA users specify equation application by interactively constructing a visual data flow

diagram, whereas SIMLAB users must write pseudo-code to apply equations within the experiment

scenario. Perhaps the key feature that distinguishes SIGMA from SIMLAB is the use of a knowledge

base to represent and store scientific domain knowledge as part of a permanent, reusable repository.

The SIGMA user does not need to specify details associated with quantities and units because this

information is available in SIGMA's knowledge base. Also, SIGMA is designed as an interactive
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assistant that dynamically helps the scientist with the process of model-building. SIMLAB simply

provides a high-level language and does not assist in the model-building process. Finally, SIGMA's

explicit representation of semantic equation annotations appears to be more explicit and powerful than

SIMLAB's representational scheme.

00(Barstow, Duffey, Smoliar, & Vestal, 1982) is a domain-specific automatic programming system

constructed at Schlumberger to assist in generating oil well log interpretation software. The system was

designed for direct use by petroleum scientists, who were to use it to construct geological models

expressed as a set of quantitative equations relating geological parameters of interest. Like SIGMA and

ECO, 00 makes extensive use of scientific domain knowledge to aid in the model-building process.

However, SIGMA's equation representation appears to incorporate more domain knowledge and

constraints than the representation used in the 00 prototype.

In a similar vein, (Kant, Daube, MacGregor, & Wald, 1991) describes the SINAPSE system under

development at Schlumberger. SINAPSE helps scientists build mathematical modeling software used

in the context of data interpretation tasks such as seismic interpretation. In particular, the system

synthesizes finite-difference programs that implement partial differential equation models.

SINAPSE can be compared with SIGMA on a variety of dimensions. In SIGMA, the emphasis is on

specification acquisition, rather than code synthesis; in SINAPSE, the emphasis is reversed. The

grainsize and nature of the scientific modeling problem addressed by the two systems is quite different.

SIGMA provides assistance in specifying a complete model from end to end, whereas SINAPSE focuses

on the subtask synthesizing efficient algorithms for modeling steps involving the solution of partial

differential equations. Conceptually, SINAPSE could be called as a subroutine to synthesize code for

one of the modeling steps specified using SIGMA. Finally, the "domain" of expertise for these two

systems is different. SIGMA's "domain knowledge" consists of knowledge about the quantities,

equations, objects, and constraints necessary to model a particular physical system of interest to the

scientist. SINAPSE's "domain knowledge" consists primarily of knowledge about mathematics, rather

than knowledge about the scientific domain under study.

Our motivation and approach is similar in spirit to the philosophy behind ARIES (Johnson &

Harris, 1991). ARIES helps requirements analysts construct specifications by providing defined

concepts and terminology which are stored in a large knowledge base that employs representational

mechanisms similar to those available in SIGMA's representation language. The ARIES knowledge

base stores knowledge about the air traffic control domain. SIGMA can be viewed as an additional

instance of a new class of software tool that uses extensive domain knowledge to assist with various

aspects of the software engineering task (Barstow, 1985; Iscoe, 1991).

Our work also bears some relationship to a growing body of work on automated model construction

(Addanki, Cremonini, & Penberthy, 1991; Falkenhainer & Forbus, 1991; Ling & Steinberg, 1992; Nayak,

39



A Prototyping Environment for Constructing Scientific Models Keller et al.

1992; Weld, 1990). This work originates from within the model-based reasoning community, where the

focus has been primarily on qualitative modeling of physical systems. Several of these systems are

based on the notion of compositional modeling (Falkenhainer & Forbus, 1991), in which model

fragments are assembled together to build whole models. Model fragments encapsulate a set of relevant

equations that describe some physical phenomenon. Although the concept of model fragments may

prove useful in SIGMA, the annotated data flow diagram representation currently emphasizes

individual equations rather than aggregated fragments as the central organizing structure behind

modeling. One significant difference with respect to the automated modeling work is that SIGMA

provides only model-building assistance, not complete automation. The user must make choices as to

which equations should be included in a given model. We believe that the size of the search space for

building models of reasonable complexity will preclude a completely automated approach. Model-

building is inherently an open-ended activity, and most automated approaches rely heavily on closed-

world assumptions in which the equations, objects, arid relations are all known in advance of the model

formulation activity. In areas of active scientific investigation, this assumption may be ill-advised

and inappropriate. In any case, we are focusing on providing intelligent assistance to the scientist, and

may consider additional steps toward automation as we become convinced of the feasibility and user

acceptance of this approach.

8 Status and future work

We have successfully used SIGMA to reimplement portions of two pre-existing Fortran models - one

from an ecosystem sciences domain and one from a planetary atmospheric sciences domain. In both of

these cases, the models created with SIGMA have replicated results previously published in the

scientific literature (Lindal, et al., 1983; Running & Coughlan, 1988). To give a feeling for the size of

these models, the ecosystem model consists of about 50 transforms that calculate or use over 60 different

quantities, while the Titan atmospheric model consists of about 25 transforms using or calculating 45

quantities. (These 45 quantifies are replicated over a gridded array of dimension 100.) Both of these

models execute in real time, although the entire Titan model takes on the order of tens of seconds

elapsed time to execute. In this case, the inefficiency is due to non-optimized code and an untuned

runtime LISP environment; The portion of the Titan model we have implemented is not intrinsically

computationally complex.

SIGMA is implemented in CommonLisp on a Sun SPARCstation 2, and features a direct manipulation

Motif-based graphical user interface. The interface was constructed with a user interface-building

environment called GINA (Spenke & Beilken, 1990). SIGMA's development to date represents over

four person-years of effort.

40



A Prototyping Environment for Constructing Scientific Models Keller et al.

SIGMA is currently undergoing a series of tests by our science collaborators to evaluate its promise as

a working tool. We feel the long-term prospects for this work are very encouraging. Scientists' initial

exposure to working with SIGMA - although limited -- has been extremely enthusiastic. The scientists

seem to appreciate the benefits of imposing a rigorous structure on what is typically an ill-defined and

ad hoc model-building process. Among the perceived benefits are automated assistance and more

sophisticated error-checking capabilities. Aside from its primary role as a model-building tool, users

have expressed great interest in SIGMA as a training tool and as a sophisticated documentation tool for

scientific models.

Our use of data flow diagrams as a language for describing models has been particularly well-

received by users. In several instances, scientists were surprised and enlightened upon viewing their old

Fortran modeling code expressed in this type of abstract, graphical representation. There are several

reasons for this enthusiasm. First, data dependencies are much easier to trace in graphical form than in

textual form. Data dependencies are a critical to solid understanding of model behavior. Users also

have been enthusiastic about the direct and immediate accessibility of their code using the SIGMA

interface. The interface allows them easy access to intermediary computed values that appear as

quantity nodes in the data flow diagram. This easy access makes debugging a simple matter of

selectively probing quantity nodes in the data flow diagram, and tracing the dependency links

backwards toward known values. In much the same way as schematic diagrams are a convenient

notational language for specifying electromechanical devices, data flow diagrams serve a convenient,

structured medium for model-building. The diagram structure allows users to construct models in a

piecemeal fashion and avoids the type of linear thinking associated with conventional programming.

Based on our experience to date, it appears that there are several issues that need to be addressed

before the system can be used in a routine fashion for modeling. We discuss these issues in the following

sections.

8.1 Efficiency, numerical sensitivities

As we have mentioned, the current version of SIGMA focuses only on prototyping scientific modeling

software, and ignores issues related to efficient code synthesis, numerical stability, database access,

and platform dependencies. For applications where such concerns are minimized, models can be built

with SIGMA in a fraction of the time necessary to produce the corresponding Fortran code, and executed

to produce useful results. But in many cases, it will be necessary to compile more efficient and more

numerically-sophisticated modeling code. We envision using SIGMA's internal model representation as

the starting point for a more complete, end-to-end code generation process.
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8.2 Knowledge acquisition and maintenance

Another concern is the lack of adequate knowledge acquisition tools to facilitate knowledge entry by

the scientist-user. We must design and build acquisition and browsing tools to help users inspect,

augment, and maintain the knowledge in SIGMA's knowledge base. In realistic modeling interactions,

the user will need to add new quantities, scientific units, objects, attributes, and equations. Without the

ability to add new knowledge, modelers quickly run into dead ends. It is unrealistic to expect anyone to

anticipate the needs of the modeler and build a 'complete' knowledge base.

We have recently taken an important step toward addressing knowledge acquisition concerns by

implementing a graphical equation editor that permits users to enter and modify equations and their

associated semantic augmentations. Additional problems have surfaced with the introduction of this

editor. In particular, the user must understand some aspects o_ SIGMA's knowledge representation

scheme in order to construct an equation annotation. For example, the user must attach each symbol in a

new equation to an attribute of some object in SIGMA's knowledge base. Although well-motivated by

the goals of representational soundness and knowledge reuse, the structure of the knowledge base is

complex and at times unintuitive to the domain specialist. The knowledge base structure may prove to

be a barrier to successful knowledge acquisition unless we provide methods for making these

representation structures intuitive and easy to understand.

8.3 Model complexity

Once users have the ability to augment SIGMA's knowledge base, the size and complexity of models

that can be constructed with the system will grow quickly. As the number of quantities and transforms

in a model grows, it becomes increasingly difficult to visualize and manipulate the model graphically.

We will need to provide tools and techniques to manage this complexity. We have explored several

methods of displaying and browsing the large data flow diagrams that users construct with SIGMA.

One promising technique we intend to pursue is allowing users to hierarchically abstract portions of

the data flow diagram. In effect, this will allow users to package meaningful computational units (e.g.,

sequences of transforms) within a model. We also plan to allow users to export these packaged

computations as types of reusable macro-transforms within SIGMA's knowledge base.

8.4 Experiment scenario configuration

SIGMA does not currently provide support for configuring experiment scenarios. Instead, SIGMA

contains a set of pre-defined experiment scenarios developed in collaboration with domain scientists

and knowledge engineers. These scenarios may be parameterized, so each scenario generates a
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potentially large number of instantiated scenarios. However, each pre-defined scenario configuration

is fixed, and can only be changed by system designers. The initial idea behind fixing the scenarios was

that each scenario would capture a particular scientist's modeling expertise, and portray his or her

individual view of the experimental situation. Since users of the system would generally have less

expertise than the expert, we reasoned that they would willingly adopt one of these expert

viewpoints. In practice, our collaborators are experts, rather than novice model users, and would like

the ability to configure the experiment scenario.

8.5 Multiple models

Modeling is inherently an iterative, exploratory process. A scientist may formulate one or more

hypotheses, construct models to test these hypotheses, compare results across models, modify

hypotheses, and begin again. SIGMA provides a mechanism for scientists to implement one model at a

time, but does not allow them to construct multiple models simultaneously or to compare results across

models. We have begun to implement a kind of "multiple worlds" mechanism (Filman, 1988; Guha,

1991) that will permit users to have this type of capability.

8.6 Mathematical sophistication

As mentioned previously, SIGMA limits the type of mathematics that can be used in a model. In

particular, SIGMA supports only non-coupled algebraic and first order ordinary differential equations.

This restriction severely limits the mathematical sophistication of the models that can be specified

using SIGMA. We would like to extend SIGMA's capabilities to cover simultaneous equations, including

higher-order ordinary and partial differential equations. To handle these cases, we will need to

address issues of discretization and grid geometries that are not addressed in the current system.

8.7 Model validation

Validation of results is an important part of the model-building process. Model results must be

validated against known experimental data and a priori expectations, including numerical trend

expectations, sign and order of magnitude expectations, and domain-specific expectations. Sensitivity

analyses must be conducted to determine the robustness of the model in the face of small changes to

inputs. SIGMA provides some incidental support for the validation process (e.g., the ability to change

input parameters and re-execute a model), but this support must be improved and conveniently

packaged.
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9 Summary and conclusions

In this paper, we have described SIGMA, a knowledge-based software development environment for

prototyping scientific models. With a specialized graphical user interface, a scientist-user can

construct a high-level visual spedfication that captures the essential computational dependencies in a

scientific model. During the model construction process, the system uses its scientific domain knowledge

to ensure that the model being built is consistent and coherent. The availability of background domain

knowledge enables the system to automatically infer portions of the model specification that

otherwise would be tedious for the user to spedfy. The final product of the construction process is an

executable prototype of a scientific model. SIGMA accelerates the overall model-building process and

eliminates the scientist's need to program in a formal language. Furthermore, the models developed

with SIGMA are easier to understand and potentially reuse than typical low-level scientific modeling

code. By providing an interactive model-building environment, SIGMA encourages users to experiment

and try new approaches with a minimal investment of time. Thus SIGMA supports the essential trial-

and-error character of the scientific modeling process. With its use of automated inference and other

knowledge-based techniques, the SIGMA model-building environment achieves a significant advance

over Fortran environments used in the scientific computation community today.
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Appendix 1: Sample object and transform definitions

This appendix is intended to give the reader a better understanding of the representational structures

in SIGMA's knowledge base. The first subsection includes object definitions for some of the objects

referenced in the text and in Figure 17. Text describing the general structure of SIGMA's knowledge base

appears within Section 5, and may be helpful in understanding these object definitions. Following this

subsection are the definitions of the equations depicted in Figures 16, 18, and 19, along with a sample

definition of a subroutine. The object definitions in the first subsection should be cross-referenced in

understanding these transform definitions.

The syntax of the definitions in this appendix has been slightly altered for readability and some

details have been omitted. However, the basic structure of the definitions remains intact. A symbol

preceded by a "$" is a variable representing a quantity; A symbol preceded by a "&" is a variable

representing an object.

A1.1 Object definitions

(defobject physical-entity (modelled-object)

((density

:type density-quantity

volume of:description "the mass per

(pressure

:type pressure-quantity

:description "the pressure of

(temperature

:type temperature-quantity

:description "the temperature

(mass

:type mass-quantity

:description "the mass of the entity")

;; physical-entity is a type of

;; modelled-object, and inherits

;; attributes from this object

;; Definitions of attributes that are

;; local to physical-entity follow

etc...

)

:description "the collection

properties")

;; Type gives the object type that

;; can be stored in this attribute

the entity")

the entity")

of the entity")

of all things with physical
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(defobject radiation-interactlon (atmospheric-object) ;; This object represents the

;; collision between a radiation

;; source and a physical entity

((refractivity ;; Refractivity-and polarizability are

:type refractivity-quantity ;; quantities that are a function of both

;; the radiation source and the entity

:description "the refractivity induced by the interaction")

(polarizability

:type polarizability-quantity

:description "the polarizability induced by the interaction")

(incident-radiation ;; a link to radiation source

:type radiation-source

:description "the radiation source involved in the interaction")

(radiated-entity ;; a link to physical entity

:type physical-entity

:description "the physical entity being irradiated")

)

:description "the collection of interactions between radiation sources and

physical entities")

(defobject force-field (field)

((first-body

:type physical-entity)

(second-body

:type physical-entity)

(force

:type force-quantity)

(length

:type length-quantity))

(defobject mixture (physical-entity) ;; A mixture is a specialization of

;; physical-entity

((constituents ;; This attribute is locally defined for mixtures

:type mixture-constituent) ;; and stores an array of links to objects of

;; type mixture-constituent

)

:description "the collection of all mixtures")

(defobject mixture-constituent (physical-entity) ;; A mixture-constituent is also

;; a specialization of physical-entity
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((mixing-fraction ;; This attribute is locally defined for constituents

:type mixing-ratio-quantity) ;; and stores the percentage of this constituent

;; with respect to the total amount of mixture

)

:description "the collection of all constituents of mixtures")

(defobject atmospheric-parcel (mixture) ;; An atmospheric-parcel is a further

;; specialization of mixture

((altitude ;; a local attribute of atmospheric-parcel

:type length-quantity)

etc ...

)

:description "the collection of all atmospheric parcels")

;;; Following are objects related to the representation of quantities and

;;; scientific unit expressions

(defobject physical-quantity (modelled-object)

((value

:type lisp-number)

(unit

:type scientific-unit-expression))

:description "The set of all quantities")

(defquantity pressure-quantity ;; Definition of pressure-quantity,

;; an specialization of "physical-quantity"

:description "Pressure is force per unit area."

:derivatives ((distance dz-pressure))

:unit pressure-unit)

;; Derivative of pressure

;; with respect to distance is a

;; quantity called dz-pressure

(defunitype pressure-unit (factor-convertible-unit)

;; Pressure is a measure of the force applied per unit area

;; on a surface.

((definition (/ force-unit area-unit))))
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(defunit bar pressure-unit ;; bar is an instance of the class pressure-unit

:documentation "The bar is a unit of pressure nearly equal to an

atmosphere."

:SI-conversion-factor le5 ;; to covert a bar to the SI

;; standard unit, multiply by le5

:conversion-factors (pascal id5

centibar 100

millibar i000

atmosphere 0.986923d0))
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A1_2 "Gravitational Force Equation "definition

(defequation gravitational_force_equation ;;; See Figure 16

:equation ;;; Equation formula:

("$F = SG * Sml * $m2 / Sr ** 2") ;;; If the desired output variable is not

;;; on the left hand side of the equation,

;;; SIGMA calls REDUCE to rewrite the formula

;;; in the proper form prior to execution

:anchor-objects ;;; Definition of focal or "anchor" objects,

;;; which serve as anchors for the equation

;;; matching process. All objects referenced

;;; in the equation can be "derived" from

;;; the anchors by following links.

;;; In matching an equation, the anchor

;;; objects are matched and bound to

;;; instances first; then the

;;; derived-object links are followed

;;; to locate subsidiary instances.

((&ffield force-field))

:derived-objects

((&entityl (first-body &ffield))

(&entity2 (second-body &ffield)))

;;; &ffield is a local variable representing

;;; an object of type "force-field"

;;; Definition of subsidiary objects,which are

;;; derived from anchor object via links.

;;; &entityl represents the object

;;; linked to &ffield via the

;;; "first-body" link.

;;; &entity2 is linked to the same

;;; force-field as &entityl,

;;; but via the "second-body" link.

:variable-specs

(($F (force &ffield))

($ml (mass &entityl))

($m2 (mass &entity2))

($r (length &ffield)))

:possible-output-variables

;;; Definition of symbols in formula

;;; $F is the "force" attribute of &ffield

;;; Only certain symbols are
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;;; permitted as outputs

($F Sml $m2 $r)

:constants ;;; Definition of constant symbols

(($G universal_gravitational_constant))

:constraints ;;; Additional constraints on objects.

;;; Note that constraint requiring

;;; &entityl and &entity2 to be distinct

;;; is implicit. They are considered distinct

;;; if two separate symbols are defined

;;; in the derived-objects section above.

((= Sr (center-distance &entityl &entity2)))

:citation mckay-pg-44 ;;; Pointer to a citation for the equation

:description "Equation describing the gravitational force

between two bodies with mass ml and m2, respectively"

)
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A1_3 "Re.activity of a Gaseous Mixture" equation definition

(defequation refractivity_of_a_gaseous_mixture ;;; See Figure 18

:equation ;;; Equation formula

("$R = summation(&constits, $N_i * $p_i)")

:anchor-objects ;;; Definition of focal or "anchor" objects

((&mixture-interaction radiation-interaction)) ;; &mixture-interaction is a

;; local variable representing

;; a radiation-interaction object

:derived-objects ;;; Definition of secondary objects derived

;;; from anchor via links

((&mix mixture (radiated-entity &mixture-interaction))

;;; &mix represents the object that is connected to

;;; &mixture-interaction via the radiated-entity link.

;;; The specifier _mixture' further constrains the object to be a mixture.

;;; Without this specifier, the object is only constrained by the type

;;; of the radiated-entity link, which is of type physical-entity.

(&radiation (incident-radiation &mixture-interaction))

;;; &radiation represents the object that is connected

;;; to &mixture-interaction via the incident-radiation link

(&constits (constituents &mix) (forall &constits (phase &constits gaseous)))

;;; &constits is a list of all constituents of the mixture.

;;; All of the constituents must be in gaseous phase.

(&constit (one-of &constits))

;;; &constit is bound to a member of the list

(&constit-interaction radiation-interaction

(and (radiated-entity &constit-interaction &constit)

(incident-radiation &constit-interaction &radiation)))

;;; &constit-interaction represents a radiation interaction object

;;; such that the radiated-entity of &constit-interaction is &constit

;;; and the incident-radiation of &constit-interaction is &radiation.

;;; Note that &radiation is the incident-radiation of both

;;; &constit-interaction and &mixture-interaction.

:variable-specs ;;; Definition of symbols in the formula

(($R (refractivity &mixture-interaction)) ;; $R is the "refractivity" attribute
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($N_i (density &constit))

($p_i (polarizability &constit-interaction)))

of the &mixture-interaction object

:possible-output-variables ;;; Symbols that are permitted as outputs

(SR $N_i $p_i)

:citation mckay-pg-44 ;;; Reference to bibliographic citation for equation

:description "Equation describing how to calculate the refractivity of

a gaseous mixture as a function of the density and polarizability

of the gases in the mixture")
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A1.4 "Density Computation" equation definition

(defequation density_computation ; ; ; See Figure 19

:equat ion

("$N = $R / $p")

;;; Equation formula

:anchor-objects ;;; Definition of focal or "anchor" objects

((&interaction radiation-interaction)) ;; &interaction is a

;; local variable representing

;; a radiation-interaction object

:derived-objects ;;; Definition of secondary objects derived

;;; from anchor via links

((&entity (radiated-entity &interaction))

;;; &entity represents the object that is connected

;;; to &interaction via the radiated-entity link

(&radiation (incident-radiation &interaction))

;;; &radiation represents the object that is connected

;;; to &interaction via the incident-radiation link

:variable-specs ;;; Definition of symbols in the formula

(($N (density &entity))

($R (refractivity &interaction))

($p (polarizability &interaction)))

;; $N is the "density" attribute

;; of the &entity object

:possible-output-variables ;;; Symbols that are permitted as outputs

($N $R $p)

:citation mckay-pg-47

:description "Equation describing the refractivity (R) of a physical entity

as a function of its number density (N) and polarizability (p)")

;;; Reference to bibliographic citation for equation
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A1.5 "Equation of State" subroutine definition

(defsubroutine equation of state

:language fortran

:subroutine ;;; Subroutine call

("eqstate($f_N2, $size_f_N2, $f_H2, $size f H2, $P, $size_P,

SN, $size_N, ST, $size_T")

:anchor-objects ;;; Definition of focal or "anchor" objects

((&parcel atmospheric-parcel))

:derived-objects ;;; Definition of secondary objects derived

;;; from anchor via links

((&N2-constituent (constituents &parcel)

(molecular-composition &N2-constituent nitrogen-gaseous)))

(&H2-constituent (constituents &parcel)

(molecular-composition &H2-constituent hydrogen-gaseous)))

:variable-specs ;;; Definition of symbols in the subroutine call

(($f_N2 (mixing-fraction &N2-constituent)

($size f N2) ;;; size of the array for this argument

;;; (size = 1 if argument is a scalar)

dimensionless) ;;; no scientific units associated with argument

($f_H2 (mixing-fraction &H2-constituent)

($size_f_H2)

dimensionless)

($P (pressure &parcel)

($size_P)

atmosphere) ;;; P is expected in units of "atmosphere"

($N (density &parcel)

($size_N)

(/ mole liter)) ;;; N must be in units of mole/liter

(ST (temperature &parcel)

($size_T)

kelvin)) ;;; T must be in kelvins

:input-variables ;;; Symbols that are subroutine inputs

;;; ST is (implicitly) the only output

($f_N2 $f_H2 $P $N)

:description "Fortran subroutine to compute the temperature of an atmospheric

parcel composed of Nitrogen and Hydrogen, given the mixing fraction

of these gases and the pressure and density of the parcel")
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Appendix 2: Experiment scenario description

This appendix provides the formal description for the Titan experiment scenario illustrated in Figure 3. This

description has been simplified, and details have been omitted to improve the clarity of the presentation.

(defscenario lindal-scenario ;;; Experiment scenario for Voyager-Titan encounter

:objects ;;; Type definitions of objects in the scenario.

;;; All object variables have the form ?x

((atmospheric-parcel ?parcel) ;;; ?parcel represents an object

;;; of type atmospheric-parcel

(parcel-constituent ?pc-n2)

(parcel-constituent ?pc-h2)

(radiation-interaction ?interaction-n2)

(radiation-interaction ?interaction-h2)

(radiation-interaction ?interaction))

;;; The radiation interaction objects represent the collision of the

;;; Voyager signal with the atmospheric parcel and its constituents

:relations ;;; Defining relations between objects

((associated-planetary-body

?parcel titan)

;;; The associated-planetary-body link

;;; in the ?parcel object is filled with

;;; the titan object.

(components ?parcel (?pc-n2 ?pc-h2)) ;;; The components of ?parcel are the

;;; ?pc-n2 and ?pc-h2 objects

(molecular-composition ?pc-n2 nitrogen-gaseous) ;;; The molecular-composition

;;; of ?pc-n2 is nitrogen-gaseous

(molecular-composition ?pc-h2 hydrogen-gaseous)

;;; The following relations set up links in the radiation-interaction

;;; objects so they point to the appropriate radiated-entity and

;;; incident-radiation objects

(radiated-entity ?interaction ?parcel)

(radiated-entity ?interaction-n2 ?pc-n2)

(radiated-entity ?interaction-h2 ?pc-h2)

(incident-radiation ?interaction voyager-signal)

(incident-radiation ?interaction-n2 voyager-signal)

(incident-radiation ?interaction-h2 voyager-signal))

:grid ;;; The object structure described above
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;;; is repeated in an grid (or array) structure,

. ;;; with one structure at each altitude level

(?parcel :stored-in (parcels titan) :axes (altitude))

;; This declares a grid of ?parcel object instances.

;; The grid is stored in the 'parcels' slot of the 'titan' object instance.

;; The 'titan' instance is already predefined as part of SIGMA's

;; knowledge base. This grid is indexed by the 'altitude' attribute

;; of the stored ?parcel instances.

:initial-values ;;; The following values are initialized in the slots of

;;; instantiated objects.

((altitude ?parcel) (refractivity ?interaction)

;; The altitude slot of the ?parcel instance and the refractivity slot of the

;; ?interaction instance are initialized.

;; Each pair below contains a value and its associated scientific unit.

;; There are multiple sets of pairs because the quantities are part

;; of the grid array structure; One value is initialized for each altitude.

(((0_0 kilometer) (1.308e-9 dimensionless))

((0.5 kilometer) (1.284e-9 dimensionless))

((i.0 kilometer) (I.167e-9 dimensionless))

... etc))
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